

Zero Emission Hydrogen Turbine Center

- Hydrogen Gas Turbines in Zero Emission Energy Systems

ERA-Net SES 22-10-19

Smart Energy

MATER STUDIORUM rsità di bologna

Welcome

- Todays meeting:
 - Please mute your microphone unless you are asked to by moderator
 - Turn on camera if you are presenting/speaking
 - Write your comments/questions in the chat moderator will check these if time allows it

Workshop check-in: - Which sector do you represent? Write in the chat

Goals for the session

- Learn about:
 - key conclusions from a technical, academic and governance perspective
 - research on hydrogen and energy systems
 - possible scale up scenario of the tested energy system
- Discuss!
 - Challenges ahead
 - Opportunities
 - Possible future

Agenda

- Session start up Welcome! 5 min
- Workshop check-in 5 min
- Hydrogen Demonstration plant Hydrogen demo plant Description and key conclusions, Siemens Energy 10 min
 - Discussion 1 10 min
- Hydrogen in the European energy system, Chalmers University 15 min
 - Discussion 2 10 min
- Feedback and closure 5 min

Overall project targets

- 1) Decarbonization contribution of the gas turbine test facility
- 2) Knowledge sharing Hybrid, P2G, Smart microgrids
- 3) Demonstrating solutions Flexible power, P2G, storage and smart grids, gas turbines
- 4) Develop competences Gas turbines role in a future energy system, P2G, storage, microgrids
- 5) Contribute to the development of a sustainable society regionally, nationally, globally

Hydrogen Demonstration plant Description and key-conclusions Siemens Energy

The ZEHTC concept

7880

Smart Energy Systems ERA-Net

Swedish Energy Agency

Turbine testing

Hydrogen production

Hydrogen storage

Battery and controls

Installations ticker

Summer/autumn 2020: Civil work

December 2020: Delivery of hydrogen storage

January 2021: Installation solar field

March/April 2021: Delivery compressor & electrolyser

April – October 2021: Completion & commissioning

Hand-over to regular operation and testing/evaluation

Decarbonization with gas turbines **15** Unrestricted © Siemens Energy, 2022

Key conclusions 1 - design and operation

- Design and build of a hydrogen integrating energy system is well **feasible and demonstrated**.
- The hydrogen production is successfully integrated with the gas turbine test facility where the hydrogen is used as **fuel and an enabler for further R&D**.
- Storage is the limiting part in hydrogen-based systems, but **technology is mature and available**.
- Hydrogen is well controllable from a safety perspective but confidence and regulations are still in development and need to be considered early in such projects.

© Siemens Energy, 2022

Key conclusions 2 – scale up and market

- The project enables the development of hydrogen offerings and hydrogen ready concepts
- The plant is base for **scale up** design of future energy systems
- Increased focus on other green fuels including liquid - Bio-fuel (biogas, biodiesel) and e-fuels (ammonia, methanol) are beneficial to complement hydrogen.
- Fuel diversity improves availability of green fuels and storage capability for **long duration storage**.

A possible energy system © Siemens Energy, 2022

Key conclusions 3- knowledge sharing

- Very valuable learning interaction both internally and with customers, projects, stakeholders - several visitors every week
- Better understanding of hydrogen **re-electrification** system and the role of gas turbines to complement renewables helps dialogues in energy community.
- The plant is driving the energy community and Siemens Energy to accelerate and clarify the way forward for hydrogen driven turbines - sharpened roadmap for hydrogen readiness – 100% H2 in 2025

Gas turbine SGT-750 © Siemens Energy, 2022

Hydrogen capability in Siemens Energy medium size gas turbines targeting 100% latest 2025

Released hydrogen capability

Ongoing development

H₂ content in natural gas

All turbines equipped with DLE burner technology Power output in MW at ISO ambient conditions and natural gas, includes both new units and existing fleet

Discussion 1 Questions to consortium panel

Hydrogen in the European energy system Chalmers University of Technology – Simon Öberg

Background

Background

Modelling

- Investments in technologies
- Dispatch of generation (and storage)
- Minimizing the total system cost

Subjected to:

- Energy balance
- Emission limitations
- Potential for wind and solar PV
- Weather data for wind och solar
- Cost structure for technologies
- Ramp-rates for thermal processes

Modelling

- Investments in technologies
- Dispatch of generation (and storage)
- Minimizing the total system cost

Subjected to:

- Energy balance
- Emission limitations
- Potential for wind and solar PV
- Weather data for wind och solar
- Cost structure for technologies
- Ramp-rates for thermal processes

Time-shifting of generation

ZEBU

Smart Energy Systems ERA-Net

Swedish Energy Agency

Combined Cycle Gas Turbine with flexible mixing up to 100% H₂.

Hydrogen-fueled gas turbines

a) No Salt Caverns (Scenario 1a)

Hydrogen-fueled gas turbines

 $3.5 \times H_{2,average-cost}$

~ $5 \times H_{2,average-cost}$

Swedish Energy Agency

2800

Competitiveness of hydrogen gas turbines

The cost of hydrogen

Parameters influencing the cost of hydrogen:

- The cost of electricity.
- The cost-optimal electrolyzer capacity.
- The cost-optimal hydrogen storage capacity.
- The alternative cost of changing the industrial production in time.

The cost of hydrogen

Parameters influencing the cost of hydrogen:

- The cost of electricity.
- The cost-optimal electrolyzer capacity.
- The cost-optimal hydrogen storage capacity.
- The alternative cost of changing the industrial production in time.
- The characteristics of the hydrogen demand profile.

Conclusion

- Hydrogen-fueled gas turbines are most competitive in electricity systems with **high shares of wind power**.
- **Flexible mixing** of hydrogen is an important factor as the investment cost can be recovered also when the marginal cost of hydrogen is too high to generate a gross margin.
- The willingness-to-pay for hydrogen:
 - Under the assumptions given, the maximum willingness-to-pay for hydrogen is 5 × H_{2,average-cost}.
 - Significant amounts of hydrogen are used in gas turbines at a cost of 3–4 × H_{2,average-cost}.
 - The largest impact on the willingness-to-pay comes from the **cost of biomass** (used to produce biomethane).
- The cost of hydrogen is **highly dynamic** and influenced by several parameters, where e.g., the hydrogen demand profile has a considerable impact.

Paper I:	Exploring the competitiveness of hydrogen- fueled gas turbines in future energy systems.
Paper II:	The value of flexible fuel mixing in hydrogen- fueled gas turbines – a techno-economic study.
Paper III:	The cost dynamics of hydrogen supply in future energy systems – a techno-economic study.

Paper IV:How do inter-annual weather variations impact
the competitiveness of hydrogen-fueled gas turbines?

Discussion 2 Questions to consortium panel

Feedback and closure

Thank you for your attention!

Facts sheet ZEHTC

01	PEM Electrolyzer 225 kW	47 Nm ³ /h hydrogen production capacity @nominal operation, which would give about 100 kg per day in full time operation
02	Diaphragm compressor 15,5 kW	Compress the hydrogen from 30 bar to 200 bar
03	Hydrogen Storage	24,000 liter @200 bar, which is about 360 kg
04	Battery	75 kW / 76 kWh – enables island operation of the system (decoupled from external electricity grid)
05	Solar Panels	133kW peak (DC); 100 kW (AC); about 1500 m ² ground area
06	Gas turbine operation @15 % vol Hydrogen	One hour of full load test operation consumes about 150 kg hydrogen and saves 360 kg fuel gas and about 1 ton CO ₂ emissions (based on 30-35MWel gas turbine)

